书名

Python数据分析基础

Python数据分析基础封面
Python数据分析基础
Python数据分析基础内容简介

想深入使用手中的数据?仍是想在上千份文件上重复相同的剖析过程?没有编程经历的非程序员们怎么能在最短的时间内学会用当今炙手可热的Python语言进行数据剖析?

来自Facebook的数据专家Clinton Brownley能够帮您处理上述问题。《Python数据分析基础》这本书里,读者将能掌握基本Python编程办法,学会编写出处理电子表格和数据库中的数据的脚本,并了解使用Python模块来解析文件、分组数据和生成统计量的办法。

学习根底语法,创立并运转自己的Python脚本

读取和解析CSV文件

读取多个Excel作业表和作业簿

执行数据库操作

查找特定记录、分组数据和解析文本文件

建立统计图并绘图

生成描述性统计量并估量回归模型和分类模型

在Windows和Mac环境下按计划自动运转脚本

Python数据分析基础作者简介

Clinton W. Brownley

博士,Facebook数据科学家,负责大数据流水线、统计建模和数据可视化项目,并为大型基础设施建设提供数据驱动的决策建议。

Python数据分析基础目录

前言  xi
第1章 Python 基础  1
1.1 创建 Python 脚本  1
1.2 运行 Python 脚本  3
1.3 与命令行进行交互的几项技巧  6
1.4 Python 语言基础要素  10
1.4.1 数值  10
1.4.2 字符串  12
1.4.3 正则表达式与模式匹配  16
1.4.4 日期  19
1.4.5 列表  21
1.4.6 元组  26
1.4.7 字典  27
1.4.8 控制流  30
1.5 读取文本文件  35
1.5.1 创建文本文件  36
1.5.2 脚本和输入文件在同一位置  38
1.5.3 读取文件的新型语法  38
1.6 使用 glob 读取多个文本文件  39
1.7 写入文本文件  42
1.7.1 向 first_script.py 添加代码  42
1.7.2 写入 CSV 文件  45
1.8 print 语句  46
1.9 本章练习  47
第2章 CSV文件  48
2.1 基础 Python 与 pandas  50
2.1.1 读写 CSV 文件(第1 部分)50
2.1.2 基本字符串分析是如何失败的  56
2.1.3 读写 CSV 文件(第2 部分)57
2.2 筛选特定的行  58
2.2.1 行中的值满足某个条件  59
2.2.2 行中的值属于某个集合  60
2.2.3 行中的值匹配于某个模式/ 正则表达式  62
2.3 选取特定的列  64
2.3.1 列索引值  64
2.3.2 列标题  65
2.4 选取连续的行  67
2.5 添加标题行  69
2.6 读取多个 CSV 文件  71
2.7 从多个文件中连接数据  75
2.8 计算每个文件中值的总和与均值  78
2.9 本章练习  81
第3章 Excel 文件  82
3.1 内省 Excel 工作簿  84
3.2 处理单个工作表  88
3.2.1 读写 Excel 文件  88
3.2.2 筛选特定行  92
3.2.3 选取特定列  98
3.3 读取工作簿中的所有工作表  101
3.3.1 在所有工作表中筛选特定行  102
3.3.2 在所有工作表中选取特定列  104
3.4 在 Excel 工作簿中读取一组工作表  106
3.5 处理多个工作簿  108
3.5.1 工作表计数以及每个工作表中的行列计数  110
3.5.2 从多个工作簿中连接数据  111
3.5.3 为每个工作簿和工作表计算总数和均值  113
3.6 本章练习  117
第4章 数据库  118
4.1 Python 内置的 sqlite3 模块  119
4.1.1 向表中插入新记录  124
4.1.2 更新表中记录  128
4.2 MySQL 数据库  131
4.2.1 向表中插入新记录  135
4.2.2 查询一个表并将输出写入 CSV 文件  140
4.2.3 更新表中记录  142
4.3 本章练习  146
第5章 应用程序  147
5.1 在一个大文件集合中查找一组项目  147
5.2 为 CSV 文件中数据的任意数目分类计算统计量  158
5.3 为文本文件中数据的任意数目分类计算统计量  167
5.4 本章练习  174
第6章 图与图表  175
6.1 matplotlib  175
6.1.1 条形图  175
6.1.2 直方图  177
6.1.3 折线图  178
6.1.4 散点图  180
6.1.5 箱线图  181
6.2 pandas  183
6.3 ggplot  184
6.4 seaborn  186
第7章 描述性统计与建模  192
7.1 数据集  192
7.1.1 葡萄酒质量  192
7.1.2 客户流失  193
7.2 葡萄酒质量  194
7.2.1 描述性统计  194
7.2.2 分组、直方图与 t 检验  195
7.2.3 成对变量之间的关系和相关性  196
7.2.4 使用最小二乘估计进行线性回归  198
7.2.5 系数解释  200
7.2.6 自变量标准化  200
7.2.7 预测  202
7.3 客户流失  203
7.3.1 逻辑斯蒂回归  205
7.3.2 系数解释  207
7.3.3 预测  208
第8章 按计划自动运行脚本  209
8.1 任务计划程序(Windows 系统)209
8.2 cron 工具(macOS 系统和 Unix 系统)215
8.2.1 cron 表文件:一次性设置  216
8.2.2 向 cron 表文件中添加 cron 任务  216
第9章 从这里启航  220
9.1 更多的标准库模块和内置函数  221
9.1.1 Python 标准库(PSL):更多的标准模块  221
9.1.2 内置函数  222
9.2 Python 包索引(PyPI):更多的扩展模块  222
9.2.1 NumPy  223
9.2.2 SciPy  227
9.2.3 Scikit-Learn  230
9.2.4 更多的扩展包  232
9.3 更多的数据结构  232
9.3.1 栈  233
9.3.2 队列  233
9.3.3 图  233
9.3.4 树  234
9.4 从这里启航  234
附录A 下载指南  236
附录B 练习答案  245
作者介绍  247
封面介绍  247

Python数据分析基础下载地址

Python数据分析基础PDF下载,Python数据分析基础电子书免费下载

https://pan.baidu.com/s/1GDhpmKGQuyEY03NZRM8X-w
关注下方公众号【程序员李木子】,发送【726247】获取网盘密码
蓝奏云
如果链接失效,备用地址请到公众号【程序员李木子】,发送【726247】获取
更多书籍
用Python写网络爬虫